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PICRUSt2 for prediction of metagenome 
functions
To the Editor — One limitation of microbial 
community marker-gene sequencing is 
that it does not provide information about 
the functional composition of sampled 
communities. PICRUSt1 was developed 
in 2013 to predict the functional potential 
of a bacterial community on the basis of 
marker gene sequencing profiles, and now 
we present PICRUSt2 (https://github.com/
picrust/picrust2), which improves on the 
original method. Specifically, PICRUSt2 
contains an updated and larger database 
of gene families and reference genomes, 
provides interoperability with any operational 
taxonomic unit (OTU)-picking or 
denoising algorithm, and enables phenotype 
predictions. Benchmarking shows that 
PICRUSt2 is more accurate than PICRUSt 
and other competing methods overall. 
PICRUSt2 also allows the addition of custom 
reference databases. We highlight these 
improvements and also important caveats 
regarding the use of predicted metagenomes.

The most common method for  
profiling bacterial communities is to 
sequence the conserved 16S rRNA gene. 
Functional profiles cannot be directly 
identified using 16S rRNA gene sequence 
data owing to strain variation, so several 
methods have been developed to predict 
microbial community functions from 
taxonomic profiles (amplicon sequences) 
alone1–5. Shotgun metagenomics sequencing 
(MGS), which sequences entire genomes 
rather than marker genes, can also be 
used to characterize the functions of a 
community, but does not work well if there 
is host contamination — for example,  
in a biopsy — or if there is very little 
community biomass.

PICRUSt (hereafter “PICRUSt1”) was 
developed for prediction of functions 
from 16S marker sequences, and it is 
widely used but has some limitations. 
Standard PICRUSt1 workflows require 
input sequences to be OTUs generated 
from closed-reference OTU-picking against 
a compatible version of the Greengenes 
database6. Due to this restriction to reference 
OTUs, the default PICRUSt1 workflow 
is incompatible with sequence denoising 
methods, which produce amplicon sequence 
variants (ASVs) rather than OTUs. ASVs 
have finer resolution, allowing closely 
related organisms to be more readily 
distinguished. Furthermore, the bacterial 
reference databases used by PICRUSt1 

have not been updated since 2013 and lack 
thousands of recently added gene families.

We expected that optimizing genome 
prediction would improve accuracy of 
functional predictions. Therefore, the 
PICRUSt2 algorithm (Fig. 1a) includes 
steps that optimize genome prediction, 
including placing sequences into a reference 
phylogeny rather than relying on predictions 
limited to reference OTUs (Fig. 1b); basing 
predictions on a larger database of reference 
genomes and gene families (Fig. 1c); more 
stringently predicting pathway abundance 

(Supplementary Fig. 1); and enabling 
predictions of complex phenotypes and 
integration of custom databases.

PICRUSt2 integrates existing open-source 
tools to predict genomes of environmentally 
sampled 16S rRNA gene sequences. ASVs 
are placed into a reference tree, which is used 
as the basis of functional predictions. This 
reference tree contains 20,000 full 16S rRNA 
genes from bacterial and archaeal genomes 
in the Integrated Microbial Genomes 
(IMG) database7. Phylogenetic placement 
in PICRUSt2 is based on the output of three 
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Fig. 1 | PicruSt2 algorithm. a, The PICRuSt2 method consists of phylogenetic placement, hidden-state 
prediction and sample-wise gene and pathway abundance tabulation. ASV sequences and abundances are 
taken as input, and gene family and pathway abundances are output. All necessary reference tree and trait 
databases for the default workflow are included in the PICRuSt2 implementation. b, The default PICRuSt1 
pipeline restricted predictions to reference OTus in the Greengenes database. This requirement resulted 
in the exclusion of many study sequences across four representative 16S rRnA gene sequencing datasets. 
PICRuSt2 relaxes this requirement and is agnostic to whether the input sequences are within a reference 
database or not, which results in almost all of the input ASVs being retained in the final output. c, An 
increase in the taxonomic diversity in the default PICRuSt2 database is observed compared to PICRuSt1.
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tools: HMMER (http://www.hmmer.org) 
to place ASVs, EPA-ng8 to determine the 
optimal position of these placed ASVs in a 
reference phylogeny, and GAPPA9 to output a 
new tree incorporating the ASV placements. 
This results in a phylogenetic tree containing 
both reference genomes and environmentally 
sampled organisms, which is used to predict 
individual gene-family copy numbers for 
each ASV. This procedure is rerun for each 
input dataset, allowing users to utilize custom 
reference databases as needed, including 
those that may be optimized for the study of 
specific microbial niches.

As in PICRUSt1, hidden-state prediction 
approaches are used in PICRUSt2 to 
infer the genomic content of sampled 
sequences. The castor R package10, which is 

substantially faster than the approach used 
in PICRUSt1, is used for core hidden-state 
prediction functions. As in PICRUSt1, 
ASVs are corrected by their 16S rRNA gene 
copy number and then multiplied by their 
functional predictions to produce a predicted 
metagenome. PICRUSt2 also provides 
the ASV contribution of each predicted 
function, allowing taxonomy-informed 
statistical analyses to be conducted. Lastly, 
pathway abundances are inferred on the 
basis of structured pathway mappings, which 
are more conservative than the ‘bag-of-genes’ 
approach used in PICRUSt1.

The PICRUSt2 default genome database 
is based on 41,926 bacterial and archaeal 
genomes from the IMG database7 (8 
November 2017), which is a >20-fold 

increase over the 2,011 IMG genomes 
used by PICRUSt1. Many of the additional 
genomes are from strains of the same 
species and have identical 16S rRNA genes. 
We de-replicated the identical 16S rRNA 
genes across these genomes, which resulted 
in 20,000 final 16S rRNA gene clusters. 
The taxonomic diversity of the PICRUSt2 
reference database is greater than that of 
PICRUSt1 (Fig. 1c). The clearest increases 
in diversity are at the species and genus 
levels (5.3-fold and 2.2-fold increases, 
respectively), but all taxonomic levels are 
more diverse, including the phylum level, 
where the coverage increased from 39 to 64 
phyla (a 1.6-fold increase).

PICRUSt2 predictions based on several 
gene family databases are supported by 

Fig. 2 | PicruSt2 performance characteristics. Validation of PICRuSt2 KO predictions comparing metagenome prediction performance against gold-standard 
shotgun MGS. a, Box plots of correlations observed in stool samples from Cameroonian individuals (n = 57), the Human Microbiome Project (HMP, n = 137), 
stool samples from Indian individuals (n = 91), non-human primate stool samples (n = 77), other mammalian stool (n = 8), ocean water (n = 6) and blueberry 
soil (n = 22) datasets. The significance of paired-sample, two-tailed Wilcoxon tests is indicated above each tested grouping (*P < 0.05; **P < 0.001; ns, not 
significant). b, Comparison of significantly differentially abundant KOs between predicted metagenomes and MGS. Precision, recall and F1 score are reported 
for each category compared to the MGS data. Precision corresponds to the proportion of significant KOs for that category also significant in the MGS data. 
Recall corresponds to the proportion of significant KOs in the MGS data also significant for that category. The F1 score is the harmonic mean of these metrics. 
The subsets of the four datasets compared are indicated above each panel (the Cameroonian parasite is Entamoeba). Wilcoxon tests were performed on the 
KO relative abundances after normalizing by the median number of universal single-copy genes per sample. Significance was defined at a false discovery rate 
<0.05. The Shuffled ASVs category corresponds to PICRuSt2 predictions with ASV labels shuffled per dataset. The Alt. MGS category corresponds to an 
alternative MGS processing pipeline with reads aligned to the KeGG database rather than the default HuMAnn2 pipeline.
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default, including Kyoto Encyclopedia of 
Genes and Genomes11 (KEGG) orthologs 
(KOs) and Enzyme Commission numbers 
(EC numbers) (Supplementary Table 1). 
PICRUSt2 distinctly improves on PICRUSt1 
by including gene families more recently 
added to the KEGG database. Specifically, 
the total number of KOs is 10,543 in 
PICRUSt2, as compared to 6,909 in 
PICRUSt1, a 1.5-fold increase.

We validated PICRUSt2 metagenome 
predictions using samples from seven 
published datasets generated using both 16S 
rRNA marker-gene and MGS. We used three 
human-associated microbiome datasets: 
57 stool samples from Cameroonian 
individuals, 91 stool samples from Indian 
individuals, and 137 samples spanning 
the human body from the Human 
Microbiome Project. We also used four 
non-human-associated datasets, including 
77 non-human primate stool samples, eight 
other mammalian stool samples, six ocean 
samples, and 22 bulk soil and blueberry 
rhizosphere samples. These datasets present 
a good variation of types of sequences and 
environments (Supplementary Table 2).

PICRUSt2 KO predictions from 16S 
rRNA marker gene data were produced for 
each dataset. We compared these predictions 
to KO relative abundances profiled from 
the corresponding MGS metagenomes, 
which served as a gold standard to evaluate 
prediction performance. We performed 
the same analyses with four alternative 
prediction pipelines: PICRUSt1, Piphillin2, 

PanFP3 and Tax4Fun24,5. Spearman 
correlation coefficients (hereafter 
“correlations”) were calculated for 
matching samples between the predicted 
KO abundance and MGS KO abundance 
tables after filtering all tables to the 6,220 
KOs that could be output by all tested 
databases (Fig. 2). The correlation metric 
represents the similarity in rank ordering 
of KO abundances between the predicted 
and observed data. The correlations based 
on PICRUSt2 KO predictions ranged from 
a mean of 0.79 (s.d. = 0.028; primate stool) 
to 0.88 (s.d. = 0.019; Cameroonian stool 
dataset). For all seven datasets, PICRUSt2 
predictions were either better than or 
comparable to the best prediction method 
(paired-sample, two-tailed Wilcoxon 
tests P < 0.05). Correlations based on 
PICRUSt2 predictions were substantially 
better for non-human-associated datasets. 
This result could indicate an advantage 
of phylogenetically based methods over 
non-phylogenetically based methods, 
such as Piphillin, for environments poorly 
represented by reference genomes.

Gene families regularly co-occur within 
genomes, so the use of correlations to assess 
gene-table similarity may be limited by 
the lack of independence of gene families 
within a sample (Supplementary Fig. 2). To 
address this dependency, we compared the 
observed correlations between paired MGS 
and predicted metagenomes to correlations 
between MGS functions and a null reference 
genome, comprised of the mean gene family 

abundance across all reference genomes. 
For all datasets, PICRUSt2 metagenome 
tables were more similar to MGS values than 
the null (Fig. 2a). However, this increase 
over the null expectation is predominately 
driven by each dataset’s predicted genome 
content (rather than that of individual 
samples). This is demonstrated by the fact 
that these correlations are actually only 
slightly significantly higher than those 
observed when ASV labels are shuffled 
within a dataset (Supplementary Fig. 3). The 
observed correlations for the shuffled ASVs 
ranged from a mean of 0.77 (s.d. = 0.196; 
primate stool) to 0.84 (s.d. = 0.178; blueberry 
rhizosphere). Biologically these results are 
consistent with several patterns. First, gene 
families are correlated in copy number 
across diverse taxa (as captured by the Null 
dataset). Second, these correlations are 
stronger within than between environments 
(as shown by the difference between the 
Null and Shuffled ASV results). Lastly, 
environment-to-environment differences 
tend to be larger than sample-to-sample 
differences within an environment (as 
shown by the differences between PICRUSt2 
predictions and the Shuffled ASV results).

A complementary approach for 
validating metagenome predictions is 
to compare the results of differential 
abundance tests on 16S-predicted 
metagenomes to MGS data. A recent 
analysis of Piphillin suggested that this 
tool outperforms PICRUSt2 on the 
basis of this approach12. We similarly 

Fig. 3 | PicruSt2 accurately predicts Metacyc pathways and phenotypes for characterizing overall environments. a, Correlations between 
PICRuSt2-predicted pathway abundances and gold-standard MGS. Results are shown for each validation dataset: stool from Cameroonian individuals, the 
Human Microbiome Project (HMP), stool from Indian individuals, other mammalian stool, ocean water, non-human primate stool and blueberry soil. These 
results are limited to the 575 pathways that could potentially be identified by PICRuSt2 and HuMAnn2. b, Performance of binary phenotype predictions based 
on three metrics: F1 score, precision and recall. each point corresponds to one of the 41 phenotypes tested. Predictions assessed here are based on holding 
out each genome individually, predicting the phenotypes for that held-out genome, and comparing the predicted and observed values. The null distribution 
in this case is based on randomizing the phenotypes across the reference genomes and comparing to the actual values, which results in the same output for 
all three metrics. The P-values of paired-sample, two-tailed Wilcoxon tests are indicated above each tested grouping (*P < 0.05 and **P < 0.001). In a the y 
axis is truncated below 0.5 rather than 0 to better visualize small differences between categories. The sample sizes in a are 57 (Cameroonian), 137 (HMP), 91 
(Indian), 8 (mammal), 6 (ocean), 77 (primate) and 22 (soil).
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performed this evaluation on the KO 
predictions for four validation datasets 
(Fig. 2b; see Supplementary Methods 
and Supplementary Results). Overall, 
PICRUSt2 displayed the highest F1 
score, the harmonic mean of precision 
and recall, compared to other prediction 
methods (ranging from 0.46 to 0.59; 
mean = 0.51; s.d. = 0.06). However, all 
prediction tools displayed relatively low 
precision, the proportion of significant 
KOs that were also significant in the MGS 
data. In particular, precision ranged from 
0.38 to 0.58 (mean = 0.48; s.d. = 0.08) 
for PICRUSt2 and 0.06 to 0.66 (mean = 
0.45; s.d. = 0.27) for Piphillin. In all cases, 
PICRUSt2 predictions outperformed 
ASV-shuffled predictions, which 
ranged in precision from 0.22 to 0.42 
(mean = 0.30; s.d. = 0.09). In addition, 
differential abundance tests performed 
on MGS-derived KOs from an alternative 
MGS-processing workflow resulted in only 
marginally higher precision (ranging from 
0.57 to 0.67; mean = 0.62; s.d. = 0.04). 
Taken together, these results highlight 
the difficulty of reproducing microbial 
functional biomarkers with both predicted 
and actual metagenomics data.

MetaCyc pathway abundances are now 
the main high-level predictions output 
by PICRUSt2 by default. The MetaCyc 
database13 is an open-source alternative to 
KEGG and is also a major focus of the widely 
used metagenomics functional profiler 
HUMAnN214. MetaCyc pathway abundances 
are calculated in PICRUSt2 through 
structured mappings of EC gene families 
to pathways. These pathway predictions 
performed better than the null distribution for 
all metrics overall (paired-sample, two-tailed 
Wilcoxon tests P < 0.05; Fig. 3a and 
Supplementary Figs. 4 and 5) when compared 
to MGS-derived pathways. As in our 
previous analysis, shuffled ASV predictions 
representing overall functional structure 
within each dataset accounted for the majority 
of this signal (Supplementary Fig. 4). In 
addition, differential abundance tests on these 
pathways showed high variability in F1 scores 
across datasets and statistical methods, with 
the ASV shuffled predictions contributing 
the majority of this signal (Supplementary 
Fig. 6). F1 scores ranged from 0.23 to 0.62 
(mean = 0.41; s.d. = 0.17) and 0.22 to 0.60 
(mean = 0.34; s.d. = 0.18) for the observed 
and ASV shuffled PICRUSt2 predictions, 
respectively. Again, these results suggest that 
identifying robust differentially abundant 
metagenome-wide pathways is difficult, 
highlighting the challenge of analyzing 
microbial pathways in general.

Predictions for 41 microbial phenotypes, 
which are linked to IMG genomes15, can also 

now be generated with PICRUSt2. These 
represent high-level microbial metabolic 
activities such as “glucose utilizing” and 
“denitrifier” that are annotated as present or 
absent within each reference genome. We 
performed a hold-out validation to assess 
the performance of PICRUSt2 phenotype 
predictions, which involved comparing the 
binary phenotype predictions to the expected 
phenotypes for each reference genome.  
As based on F1 score (mean = 84.8%;  
s.d. = 9.01%), precision (mean = 86.5%; s.d. 
= 6.21%), and recall (mean = 83.5%; s.d. =  
11.4%), these predictions performed 
significantly better than the null expectation 
(Fig. 3b; Wilcoxon tests P < 0.05).

There are two main criticisms of 
amplicon-based functional prediction. 
The first is that the predictions are biased 
toward existing reference genomes, which 
means that rare environment-specific 
functions are less likely to be identified. 
This limitation is decreasing over time 
as the number of high-quality available 
genomes continues to grow. PICRUSt2 also 
allows user-specified genomes to be used 
for generating predictions, which provides 
a flexible framework for studying particular 
environments. The second criticism 
is that amplicon-based predictions 
cannot provide resolution to distinguish 
strain-specific functionality. This is an 
important limitation of PICRUSt2 and any 
amplicon-based analysis, which can only 
differentiate taxa to the degree they differ 
at the amplified marker gene sequence.

PICRUSt2 provides improved accuracy 
and flexibility for marker gene metagenome 
inference. We have highlighted these 
improvements while also describing 
limitations in identifying consistent 
differentially abundant functions in 
microbiome studies. We hope that the 
expanded functionality of PICRUSt2 will 
continue to enable the identification of 
insights into functional microbial ecology 
from amplicon sequencing profiles.

Data availability
The repository at https://github.com/
gavinmdouglas/picrust2_manuscript 
includes the processed data files that can be 
used to re-generate the figures and findings 
in this paper. The accession codes for all 
sequencing data used in this study are listed 
in the Supplementary Methods.

code availability
PICRUSt2 is available at https://github.
com/picrust/picrust2. The Python and R 
code used for the analyses and database 
construction described in this paper are 
available online at https://github.com/
gavinmdouglas/picrust2_manuscript. ❐

Editorial note: This article has been peer 
reviewed.
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